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Abstract

The chief objective of this article is to propose a new method of incorporating the sliding friction and realistic time-

varying stiffness into an analytical (multi-degree-of-freedom) spur gear model and to evaluate their effects. An accurate

finite element/contact mechanics analysis code is employed, in the ‘‘static’’ mode, to compute the mesh stiffness at every

time instant under a range of loading conditions. Here, the time-varying stiffness is calculated as an effective function

which may also include the effect of profile modifications. The realistic mesh stiffness is then incorporated into the linear

time-varying spur gear model with the contributions of sliding friction. Proposed methods are illustrated via two spur gear

examples and validated by using the finite element in the ‘‘dynamic’’ mode as experimental results. A key question whether

the sliding friction is indeed the source of the off-line-of-action forces and motions is then answered by our analytical

model. Finally, the effect of the profile modification on the dynamic transmission error has been analytically examined

under the influence of sliding friction. For instance, the linear tip relief introduces an amplification in the off-line-of-action

forces and motions due to an out of phase relationship between the normal load and friction forces.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In a series of recent articles, Vaishya and Singh [1–3] developed a spur gear pair model with periodic tooth
stiffness variations and sliding friction based on the assumption that load is equally shared among all the teeth
in contact. Using the simplified rectangular pulse shaped variation in mesh stiffness, they solved the single-
degree-of-freedom (SDOF) system equations in terms of the dynamic transmission error (DTE) using the
Floquet theory and the harmonic balance method [1–3]. While the assumption of equal load sharing yields
simplified expressions and analytically tractable solutions, it may not lead to a realistic model. The research
reported in this article aims to overcome this deficiency by employing realistic time-varying tooth stiffness
functions and the sliding friction over a range of operational conditions. A new linear time-varying (LTV)
formulation will be extended to include multi-degree-of-freedom (MDOF) system dynamics for a spur
gear pair.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Vaishya and Singh [1–3] have already provided an extensive review of prior work. In addition, Houser et al.
[4] experimentally demonstrated that the friction forces play a pivotal role in determining the load transmitted
to the bearings and housing in the off-line-of-action (OLOA) direction; this effect is more pronounced at
higher torque and under lower speed conditions. Velex and Cahouet [5] described an iterative procedure to
evaluate the effects of sliding friction, tooth shape deviations and time-varying mesh stiffness in spur and
helical gears and compared simulated bearing forces with measurements. They reported significant oscillatory
bearing forces at lower speeds that are induced by the reversal of friction excitation with alternating tooth
sliding direction. In a subsequent study, Velex and Sainsot [6] analytically found that the Coulomb friction
should be viewed as a non-negligible excitation source to error-less spur and helical gear pairs, especially for
translational vibrations and in the case of high contact ratio gears. However, their work was confined to a
study of excitations and the effects of tooth modifications were not considered. Lundvall et al. [7] considered
profile modifications and manufacturing errors in a multi-degree-of-freedom spur gear model and examined
the effect of sliding friction on the angular dynamic motions. By utilizing a numerical method, they reported
that the profile modification has less influence on the dynamic transmission error when frictional effects are
included. Nevertheless, two key questions remain unresolved. How to concurrently incorporate the time-
varying sliding friction and the realistic mesh stiffness functions into an analytical (MDOF) formulation? How
to quantify dynamic interactions between sliding friction and mesh stiffness terms especially when tip relief is
provided to the gears? Our article will address these issues.

2. Problem formulation

2.1. Objectives and assumptions

The chief objective of this article is to propose a new method of incorporating the sliding friction and
realistic time-varying stiffness into an analytical multi-degree-of-freedom spur gear model and to evaluate
their interactions. Key assumptions are: (i) the pinion and gear are modeled as rigid disks; (ii) the shaft-
bearings stiffness in the line-of-action (LOA) and off-line-of-action directions are modeled as lumped elements
which are connected to a rigid casing; (iii) vibratory angular motions are small in comparison to the mean
motion; and (iv) Coulomb friction is assumed with a constant coefficient of friction m. If assumption (iii) is not
made, the system model would have implicit non-linearities. Consequently, the position of the line of contact
and relative sliding velocity depend only on the nominal angular motions.

An accurate finite element/contact mechanics (FE/CM) analysis code [8] will be employed in the ‘‘static’’
mode to compute the mesh stiffness at every time instant under a range of loading conditions. Here, the time-
varying stiffness is calculated as an effective function which may also include the effect of profile
modifications. The realistic mesh stiffness is then incorporated into the linear time-varying spur gear
model with the contributions of sliding friction. The multi-degree-of-freedom formulation should
describe both the line-of-action and off-line-of-action dynamics; a simplified single-degree-of-freedom
model will also be derived that describes the vibratory motion in the torsional direction. Proposed
methods will be illustrated via two spur gear examples (designated as I and II) whose parameters are listed in
Tables 1 and 2. The MDOF model of Example I will be validated by using the finite element/contact
mechanics code [8] in the ‘‘dynamic’’ mode. Issues related to tip relief will be examined in Example II in
the presence of sliding friction. Finally, experimental results for Example II will be used to further validate
our method.

2.2. Timing of key meshing events

Analytical formulations for a spur gear pair are derived via Example I (NASA-ART spur gear pair) with the
parameters in Table 1. For a generic spur gear pair with non-integer contact ratio s, n ¼ ceil(s) meshing tooth
pairs need to be considered, where the ‘‘ceil’’ function rounds s value to the nearest integer bigger than s.
Consequently, two meshing tooth pairs need to be modeled for Example I (s ¼ 1.43).

First, transitions in key meshing events within a mesh cycle need to be determined from the undeformed
gear geometry for the construction of the stiffness function. Fig. 1 is a snapshot for Example I at the beginning
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Table 1

Parameters of Example I: NASA-ART spur gear pair (non-unity ratio)

Parameter/property Pinion Gear

Number of teeth 25 31

Diametral pitch, in�1 8 8

Pressure angle, deg 25 25

Outside diameter, in 3.372 4.117

Root diameter, in 2.811 3.561

Face width, in 1.250 1.250

Tooth thickness, in 0.196 0.196

Gear mass, lb s2 in�1 6.72E�03 1.04E�02

Polar moment of inertia, lb s2 in 8.48E�03 2.00E�02

Bearing stiffness (LOA and OLOA), lb in�1 20E6

Center distance, in 3.5

Profile contact ratio 1.43

Elastic modulus, psi 30E6

Density, lb s�2 in�4 7.30E�04

Poisson’s ratio 0.3

Table 2

Parameters of Example II-A and II-B: NASA spur gear pair (unity ratio). Gear pair with the perfect involute profile is designated as II-A

case and the one with tip relief is designated as II-B case

Parameter/property Pinion/Gear

Number of teeth 28

Diametral pitch, in�1 8

Pressure angle, deg 20

Outside diameter, in 3.738

Root diameter, in 3.139

Face width, in 0.25

Tooth thickness, in 0.191

Roll angle where the tip modification starts (for II-B), deg 24.5

Straight tip modification (for II-B), in 7E�04

Center distance, in 3.5

Profile contact ratio 1.63

Elastic modulus, psi 30E6

Density, lb s�2 in�4 7.30E�04

Poisson’s ratio 0.3

Range of temperatures, 1F 104, 122, 140, 158, 176

Range of input torques, lb in 500, 600, 700, 800, 900
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of the mesh cycle (t ¼ 0). At that time, pair #1 (defined as the tooth pair rolling along line AC) just comes into
mesh at point A and pair #0 (defined as the tooth pair rolling along line CD) is in contact at point C, which is
the highest point of single tooth contact (HPSTC). As the gears roll, when pair #1 approaches the lowest point
of single tooth contact (LPSTC) of point B at t ¼ tB, pair #0 leaves contact. At t ¼ tP, pair #1 passes through
the pitch point P, and the relative sliding velocity of the pinion with respect to the gear is reversed, resulting in
a reversal of the friction force. This should provide an impulse excitation to the system. Finally, pair #1 goes
through point C at t ¼ tc, completing one mesh cycle (tc). These key events are defined below, where Op is the
nominal pinion speed, rbp is the base radius of the pinion, length LAC is equal to one base pitch l

tc ¼
l

Oprbp

;
tb

tc

¼
LAB

l
;

tp

tc

¼
LAP

l
. (1a2c)
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Fig. 1. Snap short of contact pattern (at t ¼ 0) in the spur gear pair of Example I.

Fig. 2. Tooth mesh stiffness functions of Example I calculated by using the FE/CM code (in the ‘‘static’’ mode). (a) Individual and

combined stiffness functions. — total stiffness, ?? stiffness of pair #0, and - - - stiffness of pair #1. (b) The combined stiffness functions.

— realistic load sharing and - � - equal load sharing as assumed by Vaishya and Singh [1–3].

S. He et al. / Journal of Sound and Vibration 301 (2007) 927–949930
2.3. Calculation of realistic time-varying tooth stiffness functions

The realistic time-varying stiffness functions are calculated by using a finite element/contact mechanics
code, External2D [8]. An input torque Tp is applied to the pinion rotating at Op, and the mean braking torque
Tg on the gear and its angular velocity Og obey the basic gear kinematics. Superposed on the nominal motions
are oscillatory components denoted by yp and yg for the pinion and gear, respectively. The normal contact
forces N0(t), N1(t) and the pinion deflection yp(t) are then computed by performing a static analysis using the
finite element/contact mechanics software [8]. The stiffness function of the ith meshing tooth pair for a generic
spur gear pair is given by Eq. (2), where the ‘‘floor’’ function rounds the contact ratio s down to the nearest
(lower) integer value, i.e. floor (s) ¼ 1 for Example I

kiðtÞ ¼
NiðtÞ

rbpypðtÞ
; i ¼ 0; 1; . . . ; n ¼ floorðsÞ. (2)
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The stiffness function k(t) for a single tooth pair rolling through the entire meshing process is obtained by
following the contact tooth pair for n ¼ ceil(s) number of mesh cycles where the ‘‘ceil’’ function rounds sigma
to the nearest (higher) integer value. Due to the periodicity of the system, the expanded stiffness function ki(t)
of the ith meshing tooth pair is calculated at any time instant t as

kiðtÞ ¼ k ðn� iÞtc þmodðt; tcÞ½ �; i ¼ 0; 1; . . . ; n ¼ floorðsÞ. (3)

Here, ‘‘mod’’ is the modulus function defined as

modðx; yÞ ¼ x� y floorðx=yÞ; if ya0. (4)

For Example I, the calculated k0(t), k1(t) functions and their combined stiffness are shown in Fig. 2(a). Note
that k0(t) and k1(t) are, in fact, different portions of k(t) as described in Eq. (3). In Fig. 2(b) the continuous k(t)
of the realistic load sharing model is compared with the rectangular pulse shaped discontinuous k(t) based on
the equal load sharing formulation proposed earlier by Vaishya and Singh [1–3].
3. Analytical multi-degree-of-freedom dynamic model

3.1. Shaft and bearing stiffness models

Next, we develop a generic spur gear pair model with 6 degrees-of-freedom including rotational motions (yp

and yg), line-of-action translations (xp and xg) and off-line-of-action translations (yp and yg). The governing
equations are derived in the subsequent sections. First, a simplified shaft model, as shown in Fig. 3, is
developed based on the Euler’s beam theory [9]. Corresponding to the 6 degrees-of-freedom mentioned above,
only the diagonal terms in the shaft stiffness matrix need to be determined and these are given by

KSx ¼ KSy ¼ 3EI
aþ b

a3b3
ða� bÞ2 þ ab
� �

; KSyz
¼ 0, (5a,b)

where E is the Young’s modulus, I ¼ pr4s=4 is the area moment of inertia for the shaft, and a and b are the
distances from pinion/gear to the bearings.

The rolling element bearings are modeled by using the bearing stiffness matrix KBm formulation (of
dimension 6) as proposed by Lim and Singh [10,11]. Assume that each shaft is supported by two identical
axially pre-loaded ball bearings with a mean axial displacement, then the mean driving load Tm generates a
mean radial force Fxm in the line-of-action direction and a moment Mym around the off-line-of-action
direction. The time-varying friction force and torque are not included in the mean loads. Corresponding to the
6 degrees-of-freedom considered in our spur gear model, only two significant coefficients, KBxx and KByy, are
considered for KBm [10,11]. The combined bearing-shaft stiffnesses (KBx and KBy in the line-of-action and off-
line-of-action directions) are derived by assuming that the bearing and shaft stiffness elements act in series.
Fig. 3. Schematic of the bearing-shaft model.
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3.2. Dynamic mesh and friction forces

Fig. 4 depicts the mean torque and the internal reaction forces acting on the pinion for Example I. For the
sake of clarity, forces on the gear are not shown, which are equal in magnitude but opposite in direction to the
pinion forces. Based on the Coulomb friction law, the magnitude of friction force (Ff) is proportional to
the nominal tooth load (N): jFf j ¼ jmNj, where m is constant. The direction of Ff is determined from the
calculation of the nominal relative sliding velocity, which results in the linear-time-varying system
formulation. Xpi(t) is the moment arm on the pinion for the friction force acting on the ith meshing tooth
pair and is given by

X piðtÞ ¼ LXA þ ðn� iÞlþmodðOprbpt; lÞ; i ¼ 0; 1; . . . ; n ¼ floorðsÞ. (6)

The corresponding moment arm for the friction force on the gear is

X giðtÞ ¼ LYC þ il�modðOgrbgt; lÞ; i ¼ 0; 1; . . . ; n ¼ floorðsÞ. (7)

Assume, that the mesh (viscous) damping coefficient is time varying and relate it to ki(t) by a time-invariant
damping ratio zm as follows:

ciðtÞ ¼ 2zmi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðtÞ � Je

p
; i ¼ 0; 1; . . . ; n ¼ floorðsÞ, (8)

where Je ¼ JpJg=ðJpr2bg þ Jgr2bpÞ.
The normal forces acting on the pinion are

NpiðtÞ ¼ NgiðtÞ ¼ kiðtÞ rbp ypðtÞ � rbg ygðtÞ � �pðtÞ þ xpðtÞ � xgðtÞ
� �

þ ciðtÞ rbp
_ypðtÞ � rbg

_ygðtÞ � _�pðtÞ þ _xpðtÞ � _xgðtÞ
� �

; i ¼ 0; 1; . . . ; n ¼ floorðsÞ. ð9Þ

Here eP(t) is the profile error component of the static transmission error (STE), and xp(t) and xg(t) denote the
translational bearing displacements of pinion and gear, respectively. For a generic spur gear pair whose jth
meshing pair passes through the pitch point within the mesh cycle, the friction forces in the ith meshing pair
Fig. 4. Normal and friction forces of analytical (MDOF) spur gear system model.



ARTICLE IN PRESS
S. He et al. / Journal of Sound and Vibration 301 (2007) 927–949 933
are derived as follows:

F pfiðtÞ ¼

mNpiðtÞ; i ¼ 0; 1; . . . ; j � 1;

mNpiðtÞsgn modðOprbpt; lÞ þ ðn� iÞl� LAP

� �
; i ¼ j;

�mNpiðtÞ; i ¼ j; j þ 1; . . . ; n ¼ floorðsÞ;

8><
>: (10a)

F gfiðtÞ ¼

mNgiðtÞ; i ¼ 0; 1; . . . ; j � 1;

mNgiðtÞsgn modðOgrbgt; lÞ þ ðn� iÞl� LAP

� �
; i ¼ j;

�mNgiðtÞ; i ¼ j; j þ 1; . . . ; n ¼ floorðsÞ:

8><
>: (10b)

Consequently, the friction forces for Example I of Fig. 4 are given as

Fpf 0ðtÞ ¼ mNp0ðtÞ; Fpf 1ðtÞ ¼ mNp1ðtÞsgn modðOprbpt; lÞ � LAP

� �
, (10c,d)

Fgf 0ðtÞ ¼ mNg0ðtÞ; Fgf 1ðtÞ ¼ mNg1ðtÞsgn modðOgrbgt; lÞ � LAP

� �
. (10e,f)

3.3. Multi-degree-of-freedom model

The governing equations for the torsional DOFs are

Jp
€ypðtÞ ¼ Tp þ

Xn¼floorðsÞ

i¼0

X piðtÞFpfiðtÞ �
Xn¼floorðsÞ

i¼0

rbp NpiðtÞ, (11)

Jg
€ygðtÞ ¼ �Tg þ

Xn¼floorðsÞ

i¼0

X giðtÞFgfiðtÞ þ
Xn¼floorðsÞ

i¼0

rbg NgiðtÞ. (12)

The governing equations of the translational DOFs in the LOA direction are

mp €xpðtÞ þ 2zpBx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KpBx mp

p
_xpðtÞ þ KpBxxpðtÞ þ

Xn¼floorðsÞ

i¼0

NpiðtÞ ¼ 0, (13)

mg €xgðtÞ þ 2zgBx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KgBx mg

p
_xgðtÞ þ KgBxxgðtÞ þ

Xn¼floorðsÞ

i¼0

NgiðtÞ ¼ 0. (14)

Here, KpBx and KgBx are the effective shaft-bearing stiffnesses in the line-of-action direction as discussed in
Section 3.1, and zpBx and zgBx are their damping ratios. Similarly, the governing equations of the translational
DOFs in the off-line-of-action direction are

mp €ypðtÞ þ 2zpBy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KpBy mp

p
_ypðtÞ þ KpByypðtÞ �

Xn¼floorðsÞ

i¼0

FpfiðtÞ ¼ 0, (15)

mg €ygðtÞ þ 2zgBy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KgBy mg

p
_ygðtÞ þ KgByygðtÞ �

Xn¼floorðsÞ

i¼0

FgfiðtÞ ¼ 0. (16)

The composite DTE, which is the relative dynamic displacement of pinion and gear along the LOA direction,
is defined as

dðtÞ ¼ rbpypðtÞ � rbgygðtÞ þ xpðtÞ � xgðtÞ. (17)

Finally, the dynamic bearing forces are given by

F pBxðtÞ ¼ �KpBx xpðtÞ � 2zpBx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KpBxmp

p
_xpðtÞ, (18a)

F pByðtÞ ¼ �KpBy ypðtÞ � 2zpBb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KpBymp

p
_ypðtÞ, (18b)



ARTICLE IN PRESS
S. He et al. / Journal of Sound and Vibration 301 (2007) 927–949934
F gBxðtÞ ¼ �KgBx xgðtÞ � 2zgBb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KgBxmg

p
_xgðtÞ, (18c)

F gByðtÞ ¼ �KgBy ygðtÞ � 2zgBb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KgBymg

p
_ygðtÞ. (18d)

4. Analytical single-degree-of-freedom torsional model

When only the torsional degrees-of-freedom of the spur gear pair are of interest, a simplified but equivalent
single-degree-of-freedom model can be derived by assuming that the shaft-bearing’s stiffness is much higher
than the mesh stiffness. After expressing yp(t) and yg(t) in terms of the dynamic transmission error,
dðtÞ ¼ rbpypðtÞ � rbgygðtÞ, the governing single-degree-of-freedom model is obtained for a generic spur gear pair
whose jth meshing pair passes through the pitch point within the mesh cycle

Je
€dðtÞ þ

Xn¼floorðsÞ

i¼0

ciðtÞ_dðtÞ þ kiðtÞdðtÞ
� �

þ m
Xn¼floorðsÞ

i¼0

sgn modðOprbpt; lÞ þ ðn� jÞl� LAP

� �
ciðtÞ_dðtÞ þ kiðtÞdðtÞ
� �(

�
X pjðtÞJgrbp þ X gjðtÞJprbg

Jpr2bg þ Jgr2bp

" #)

¼
Te

Jpr2bg þ Jgr2bp

þ
Xn¼floorðsÞ

i¼0

ciðtÞ_�pðtÞ þ kiðtÞ�pðtÞ
� �

þ m
Xn¼floorðsÞ

i¼0

sgn modðOprbpt; lÞ þ ðn� jÞl� LAP

� �(
ciðtÞ_�pðtÞ þ kiðtÞ�pðtÞ
� �

�
X pjðtÞJgrbp þ X gjðtÞJprbg

Jpr2bg þ Jgr2bp

" #)
. ð19Þ

Here the effective polar moment of inertia Je is consistent with that defined in Eq. (8) and the effective torque
is Te ¼ Tp Jg rbp þ Tg Jp rbg. The dynamic response d(t) is controlled by three excitations: (i) time-varying Te,
(ii) ep(t) and its derivative _�pðtÞ and (iii) sliding friction. For Example I, the governing equation (19) could be
simplified as

Je
€dðtÞ þ c1ðtÞ þ c0ðtÞ½ �_dðtÞ þ k1ðtÞ þ k0ðtÞ½ �dðtÞ

þ m c1ðtÞ_dðtÞ þ k1ðtÞdðtÞ
� � X p1ðtÞJgrbp þ X g1ðtÞJprbg

Jpr2bg þ Jgr2bp

" #
sgn modðOprbpt; lÞ � LAP

� �

þ m c0ðtÞ_dðtÞ þ k0ðtÞdðtÞ
� � X p0ðtÞJgrbp þ X g0ðtÞJprbg

� �
Jpr2bg þ Jgr2bp

¼
Te

Jpr2bg þ Jgr2bp

þ c1ðtÞ þ c0ðtÞ½ �_�pðtÞ þ k1ðtÞ þ k0ðtÞ½ ��pðtÞ

þ m c1ðtÞ_�pðtÞ þ k1ðtÞ�pðtÞ
� � X p1ðtÞJgrbp þ X g1ðtÞJprbg

Jpr2bg þ Jgr2bp

" #
sgn modðOprbpt; lÞ � LAP

� �

þ m c0ðtÞ_�pðtÞ þ k0ðtÞ�pðtÞ
� � X p0ðtÞJgrbp þ X g0ðtÞJprbg

� �
Jpr2bg þ Jgr2bp

. ð20Þ
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5. Effect of sliding friction in Example I

5.1. Validation of Example I model using the finite element/contact mechanics code

The governing equations of either the single- or multi-degree-of-freedom system models are numerically
integrated by using a 4th–5th order Runge–Kutta algorithm with a fixed time step. The �pðtÞ and _�pðtÞ

components are neglected, i.e. no manufacturing errors other than specified profile modifications are
considered. Concurrently, the dynamic responses are independently calculated by running the finite element/
contact mechanics code [8] and using the Newmark method. Predicted and computed dynamic transmission
error, and line-of-action and off-line-of-action forces are in good agreement, as shown in Figs. 5–7. Note that
time domain results include both transient and steady state responses but the frequency domain results only
include the steady state responses. From Fig. 5 it can be seen that the sliding friction introduces additional
dynamic transmission error oscillations when the contact teeth pass through the pitch point. Fig. 6 illustrates
that the sliding friction enhances the dynamic bearing forces in the line-of-action direction, especially at the
second mesh harmonic. This is because that the moments associated with Fpfi(t) and Fgfi(t) are coupled with the
moments of Npi(t) and Ngi(t). Further, the normal loads mainly excite the vibration in the line-of-action
direction, as illustrated by Eqs. (9), (11) and (13). The scales of the bearing forces shown in Figs. 7(a–b) for the
m ¼ 0 case are the same as those shown in Figs. 7(c–d) for ease of comparison. The bearing forces predicted by
Fig. 5. Validation of the analytical (MDOF) model by using the FE/CM code (in the ‘‘dynamic’’ mode). Here, results for Example I are

given in terms of d(t) and its spectral contents D(f) with tc ¼ 2.4ms and fm ¼ 416.7Hz. Sub-figures (a–b) are for m ¼ 0 and (c–d) are for

m ¼ 0.2. — Analytical (MDOF) model, ?? FE/CM code (in t domain), and J FE/CM code (in f domain).
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Fig. 6. Validation of the analytical (MDOF) model by using the FE/CM code (in the ‘‘dynamic’’ mode). Here, results for Example I are

given in terms of FpBx(t) and its spectral contents FpBx(f) with tc ¼ 2.4ms and fm ¼ 416.7Hz. Sub-figures (a–b) are for m ¼ 0 and (c–d) are

for m ¼ 0.2. — Analytical (MDOF) model, ?? FE/CM code (in t domain) and J FE/CM code (in f domain).
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the multi-degree-of-freedom model for m ¼ 0 case approach zero (within the numerical error range). This is
consistent with the mathematical description of Eqs. (15) and (16). Larger deviations at this point are observed
in Figs. 7(a–b) for the finite element/contact mechanics analysis. As shown in Fig. 7 the off-line-of-action
dynamics are more significantly influenced by the sliding friction than the line-of-action dynamics, which are
shown in Fig. 6. In order to accurately predict the higher mesh harmonics, refined time steps (e.g., more than
100 increments per mesh cycle) are needed. Consequently, the finite element/contact mechanics analysis tends
to generate an extremely large data file that demands significant computing time and post-processing work.
Meanwhile, the lumped model allows for much finer time resolution while being computationally more
efficient (by at least two orders of magnitude when compared with the finite element/contact mechanics
calculations). Hence, the lumped model could be effectively used to conduct parametric design studies.

5.2. Effect of sliding friction

Fig. 8 shows the calculated dynamic transmission error without an friction, which is almost identical to the
static transmission error at a very low speed (Op ¼ 2.4 rpm). However, the sliding friction changes the shape of
the dynamic transmission error curve. During the time interval t 2 ½0; tP�, the friction torque on the pinion
opposes the normal load torque as shown in Fig. 4, resulting in a higher value of the normal load that is
needed to maintain the static equilibrium. Also, friction increases the peak-to-peak value of the dynamic
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Fig. 7. Validation of the analytical (MDOF) model by using the FE/CM code (in the ‘‘dynamic’’ mode). Here, results for Example I are

given in terms of FpBy(t) and its spectral contents FpBy(f) with tc ¼ 2.4ms and fm ¼ 416.7Hz. Sub-figures (a–b) are for m ¼ 0 and (c–d) are

for m ¼ 0.2. — Analytical (MDOF) model, ?? FE/CM code (in t domain) and J FE/CM code (in f domain).

Fig. 8. Effect of m on d(t) based on the linear time-varying SDOF model for Example I at Tp ¼ 2000 lb-in. Here, tc ¼ 1 s. — m ¼ 0 and

?? m ¼ 0.1.
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transmission error compared with that of the static transmission error. For the remainder of the mesh cycle
t 2 ½tP; tc�, friction torque acts in the same direction as the normal load torque. Thus a small value of the
normal load is sufficient to maintain the static equilibrium. Detailed parametric studies show that the
amplitude of second mesh harmonic increases with the effect of sliding friction.



ARTICLE IN PRESS
S. He et al. / Journal of Sound and Vibration 301 (2007) 927–949938
5.3. Multi-degree-of-freedom system resonances

For Example I, the nominal bearing stiffness KpBx ¼ KpBy ¼ KgBx ¼ KgBy ¼ 20� 106 lb/in are much higher
than the averaged mesh stiffness km. The couplings between the rotational and translational degrees-of-
freedom in the line-of-action direction are examined by using a simplified 3 degree-of-freedom model as
suggested by Kahraman and Singh [12]. Note that the dynamic transmission error is defined as
d ¼ rbpyxp � rbgyxg, and the undamped equations of motion are

me 0 0

0 mp 0

0 0 mg

2
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75
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8><
>:
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>;þ

km km �km
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2
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>; ¼

0

0

0

8><
>:

9>=
>;. (21)

The effective mass is defined as me ¼ JpJg=ðr2gJp þ r2pJgÞ. The eigensolutions of Eq. (21) yield three natural
frequencies: Two coupled transverse-torsional modes (f1 and f3) and one purely transverse mode (f2);
numerical values are: f1 ¼ 5130Hz, f2 ¼ 8473Hz and f3 ¼ 11,780Hz. Predictions from Eq. (21) match well
with the numerical simulations using the formulations of Section 3 (though these results are not shown
here). A comparative study verifies that one natural frequency of the multi-degree-of-freedom model
shifts away from that of the single-degree-of-freedom model (6716Hz) due to the torsional–translational
coupling effects. In the off-line-of-action direction, simulation shows that only one resonance is present at
f pBy ¼ ð1=2pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KpBy=mp

p
¼ 9748Hz, which is dictated by the bearing-shaft stiffness.
6. Effect of sliding friction in Example II

Next, the proposed model is applied to Example II with the parameters of Table 2. The chief goal is to
examine the effects of tip relief and sliding friction. Further, analogous experiments were conducted on
the NASA Glenn Research Center Gear Noise Rig [13]. Comparisons with measurements will be given in
Section 7.
6.1. Empirical coefficient of friction

The coefficient of friction varies as the gears travel through mesh, due to constantly changing lubrication
conditions between the contact teeth. An empirical equation for the prediction of the dynamic friction
variable, m, under mixed lubrication has been suggested by Benedict and Kelley [14] based on a curve-fit of
friction measurements on a roller test machine. Rebbechi et al. [15] verified this formulation by measuring the
dynamic friction forces on the teeth of a spur gear pair. Their measurements seem to be in good agreement
with the Benedict and Kelley equation except at the meshing positions close to the pitch point. This empirical
equation, then modified to account for the average gear tooth surface roughness (Ravg), is

mðgÞ ¼ 0:0127CRavg
log10

3:17� 108XGðgÞW n

noVsðgÞV 2
eðgÞ

 !
; CRavg

¼
44:5

44:5� Ravg
, (22a,b)

where CRavg
is the surface roughness constant, Wn is the normal load per unit length of face width, and u0

is the dynamic viscosity of the lubricant. Here Vs(g) is the sliding velocity, defined as the difference in the
tangential velocities of the pinion and gear, and Ve(g) is the entraining velocity, defined as the addition
of the tangential velocities, for roll angle g along the line-of-action. Further, Ravg in our case was
measured with a profilometer by using a standard method described in Ref. [13]. Lastly, XG(g) is the load
sharing factor as a function of roll angle, and it was assumed based on the ideal profile of smooth
meshing gears. In Fig. 9 m is shown as a function of roll angle calculated by using Eq. (22). Since m was
assumed to be a constant earlier, an averaged value is found by taking an average over the roll angles. The m
values that were computed at each mean torque and oil temperature for Example II (with Ravg ¼ 0.132 mm)
are given in Table 3.
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Fig. 9. The coefficient of friction m as a function of the roll angle for Example II, as predicted by using Benedict & Kelley’s empirical

equation [14]. Here, oil temperature is 104 1F and T ¼ 500 lb-in. P: Pitch point at 20.851.

Table 3

Averaged coefficient of friction m predicted over a range of operating conditions for Example II by using Benedict and Kelly’s empirical

equation [14]

Temperature (1F) Torque (lb-in)

500 600 700 800 900

104 0.032 0.033 0.034 0.035 0.036

122 0.034 0.036 0.037 0.037 0.038

140 0.036 0.037 0.038 0.039 0.040

158 0.038 0.040 0.041 0.041 0.042

176 0.040 0.041 0.042 0.043 0.044
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6.2. Effect of tip relief on STE and k(t)

The static transmission error is calculated as a function of mean torque for both the perfect involute gear
pair (designated as II-A) and then one with tip relief (designated as II-B) by using the Finite element/contact
mechanics code. The amplitudes of the static transmission error spectra at mesh harmonics for both cases are
shown in Fig. 10. (In this and following figures, predictions are shown as continuous lines for the sake of
clarity though they are calculated only at discrete torque points). The first two mesh harmonics are most
significantly affected by the tip relief and they are minimal at the ‘‘optimal’’ mean torque around 500 lb-in. For
both II-A and II-B cases, typical k(t) functions of a single meshing tooth over two complete mesh cycles are
calculated by using Eq. (2) for various mean torques, as shown in Fig. 11. Note that k(t) is defined as the
effective stiffness since it incorporates the effects of profile modification such as linear tip relief (II-B). Observe
that although the maximum stiffness remains the same, application of the tip relief significantly changes the
stiffness profile. For the perfect involute profile (II-A), steep slopes are observed in the vicinities near the single
or two teeth contact regimes, and a smooth transition is observed in between these steep regimes. Also, k(t) is
found to be insensitive to a variation in the mean torque. However, with tip relief, an almost constant slope is
found throughout the transition profile between the single and two teeth contact regimes. Moreover, a smaller
profile contact ratio (around 1.1 at 100 lb-in) is observed for the tip relief case when compared with around 1.6
(at all loads) for the perfect involute pair. The realistic k(t) function is then incorporated into the lumped
multi-degree-of-freedom dynamic model.
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Fig. 10. Mesh harmonics of the static transmission error (STE) calculated by using the FE/CM code (in the ‘‘static’’ mode) for Example II:

(a) gear pair with perfect involute profile (II-A) and (b) gear pair with tip relief (II-B). — n ¼ 1, - - n ¼ 2, and ?? n ¼ 3.

Fig. 11. Tooth stiffness functions of a single mesh tooth pair for Example II: (a) gear pair with perfect involute profile (II-A); (b) gear pair

with tip relief (II-B). — 100 lb-in, ?? 500 lb-in, and - - - 900 lb-in.
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In Fig. 12 the combined k(t) is shown with contributions of both meshing tooth pairs over two mesh cycles
for Example II. Observe that the profile of case II-A is insensitive to a variation in the mean torque, but the
profile of case II-B has a minimum around 500 lbf-in. Frequency domain analysis reveals that the first two
mesh harmonics are most significantly affected by the linear tip modification. Overall, it is evident that
significant changes take place in the static transmission error, tooth load distribution and mesh stiffness
function because of the profile modification (tip relief), which may be explained by an avoidance of the corner
contact at an ‘‘optimized’’ mean torque.
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Fig. 12. Combined tooth stiffness functions for Example II: (a) gear pair with perfect involute profile (II-A); (b) gear pair with tip relief

(II-B). — 100 lb-in, - � - 500 lb-in, and - - 900 lb-in.
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6.3. Phase relationship between normal load and friction force excitations

Using the 6 degree-of-freedom spur gear model with parameters consistent with the experimental
conditions, dynamic studies are conducted for Example II. First, a mean torque of 500 lbf-in is used
corresponding to the ‘‘optimal’’ case with minimal static transmission error. Eqs. (13)–(16) show that the
normal loads

P
Ni and friction forces

P
Ffi excite the line-of-action and off-line-of-action dynamics,

respectively. The force profile of a single tooth pair undergoing the entire meshing process is obtained for
tooth pairs #0 and #1 for two continuous meshing cycles as shown in Figs. 13(a–b) and (c–d) for cases II-A
and II-B, respectively. Observe that the peak-to-peak magnitude of combined pinion normal load

P
Npi is

minimized for the tip relief gear due to the reduced static transmission error at 500 lb-in. However, the
combined pinion friction force

P
Ffpi with tip relief has a higher peak-to-peak magnitude when compared with

the perfect involute gear. This implies that the tip relief amplifies
P

Ffi in the off-line-of-action direction while
minimizing

P
Ni in the line-of-action direction. Such contradictory effects are examined next by using the

phase relationship between Npi and Ffpi.
At points A, B, C and D, corner contacts are observed for Npi of the perfect involute gear, corresponding

to the time instants when meshing tooth pairs come into or out of contact. These introduce discontinuous
points in the slope of the

P
Npi profile. Note that Np1 and Np2 between A and B (or C and D) are in

phase with each other, which should amplify the peak-to-peak variation of
P

Npi. For the Ffpi profile
of Fig. 13(a), an abrupt change in the direction is observed at the pitch point P in addition to the
corner contacts. Unlike Npi, the profiles of Ffp1 and Ffp2 of Fig. 13(c) between A and B (or C and D)
are out of phase with each other. This should minimize the peak-to-peak variation of

P
Ffpi. When tip relief is

applied in Fig. 13(b), corner contacts of Npi are reduced and smoother transitions are observed at
points A, B, C and D. Unlike the perfect involute gear, Np1 and Np2 are now out of phase with each other
between A and B (or C and D), which reduces the peak-to-peak variation of

P
Npi. However, the

profiles of Ffp1 and Ffp2 of Fig. 13(d) are in phase with each other in the same region, which amplifies
the variation of

P
Ffpi. The out of phase relationship between Npi and Ffpi explains why the tip relief

(designed to minimize the static transmission error) tends to increase the friction force excitations.
This relationship is mathematically embedded in Eq. (10) and graphically illustrated in Fig. 4, whereNp1

and Np2 are in phase while Ffp1 and Ffp2 are out of phase. Consequently, a compromise would be
needed to simultaneously address the dynamic responses in both the line-of-action and off-line-of-action
directions.
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Fig. 13. Dynamic loads predicted for Example II at 500 lb-in, 4875 RPM and 140 1F with tc ¼ 0.44ms: (a) Normal loads of gear pair with

perfect involute profile (II-A), (b) normal loads of gear par with tip relief (II-B), and (c) friction forces of gear pair with perfect involute

profile (II-A); (d) friction forces of gear pair with tip relief (II-B). — combined, ?? tooth pair #0 and - - tooth pair #1.
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6.4. Prediction of the dynamic responses

Dynamic responses including xp(t), yp(t), Fpbx(t), Fpby(t) and the dynamic transmission error d(t) are
predicted by numerically integrating the governing equations. Predictions from both perfect and tip relief
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gears are compared to examine the effect of profile modification in the presence of sliding friction. From
Fig. 14 it can be seen that the normalized xp(t) at 500 lb-in is much smaller (over 90% reduction) when
the tip relief is applied. This is because that the STE is the most dominant excitation in the line-of-action
Fig. 14. Dynamic shaft displacements predicted for Example II at 500 lb-in, 4875 RPM and 140 1F with tc ¼ 0.44 ms and fm ¼ 2275Hz: (a)

xp(t), (b) Xp(f), (c) yp(t) and (d) Yp(f). - - - gear pair with perfect involute profile in t domain (II-A), J with perfect involute profile in f

domain (II-A) and — with tip relief (II-B).

Fig. 15. Dynamic transmission error predicted for Example II at 500 lb-in, 4875 RPM and 140 1F with tc ¼ 0.44 ms and fm ¼ 2275Hz: (a)

d(t) and (b) D(f). - - - gear pair with perfect involute profile in t domain (II-A), J with perfect involute profile in f domain (II-A), and —

with tip relief (II-B).
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direction and it is minimized at 500 lb-in when the tip relief is applied. An alternative explanation is that the
peak-to-peak variation of

P
Npi is minimized with the tip relief as shown in Fig. 13.

In the off-line-of-action direction, more significant oscillations are observed for yp(t) due to increased
P

Ffpi

excitations with tip relief. Despite that the vibratory components of
P

Npi are larger than those of
P

Ffpi, the
predicted yp(t) is actually higher than xp(t). This shows the necessity of including sliding friction when other
excitations such as the static transmission error are minimized. It is worthwhile to notice that a phase
difference is present in the simulated yp(t) before and after the tip relief is applied. Predicted pinion bearing
forces are not shown here since they depict the same features shown in the displacement responses of Fig. 14.
The dynamic transmission error predictions, as defined by Eq. (17), with and without the tip relief are shown
in Fig. 15. From the similarities between Figs. 14(a–b) and 15(a–b) it is implied that the relative line-of-action
displacement plays a dominant role in the dynamic transmission error responses. However, this conclusion is
somewhat case specific as the dynamic transmission error results depend on the mesh stiffness, bearing
stiffness and gear geometry.
7. Experimental validation of Example II models

Experiments corresponding to Example II-B were conducted at the NASA Glenn Research Center (Gear
Noise Rig) to validate the multi-degree-of-freedom spur gear pair model and to establish the relative influence
of the friction force excitation on the system. Fig. 16 is a photograph of the inside of the gearbox, where a
bracket was built to hold two shaft displacement probes one inch away from the center of the gear in the line-
of-action and off-line-of-action directions [13]. The probes face a steel collar that was machined to fit around
the output shaft with minimal eccentricity. Accelerometers were mounted on the bracket, so the motion of the
displacement probes could be subtracted from the measurements, if necessary. A thermocouple was installed
inside the gearbox to measure the temperature of the oil flinging off the gears as they enter into mesh. The
thermocouple position was chosen to be consistent with Benedict and Kelley’s [14] experiment. A common
shaft speed of 4875 rpm was used in all tests so that the first five harmonics of the gear mesh frequency (2275,
4550, 6825, 9100, and 11375Hz) do not excite system resonances. Measurements of shaft displacement in the
line-of-action and off-line-of-action directions were collected from the proximity sensors over a range of oil
inlet temperatures (104, 122, 140, 158 and 176 1F). At each temperature the torque is varied from 500 to 900 lb-
in in steps of 100 lb-in.
Fig. 16. Sensors inside the NASA gearbox (for Example II-B).
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Parametric studies were conducted to examine the dynamic responses under varying operational conditions
of temperature and nominal torque. Benedict and Kelly’s [14] friction model is used to calculate the empirical
m as given in Table 3 and realistic values of k(t), calculated by using the finite element/contact mechanics code
under varying torques, are incorporated into the dynamic model. Since the precise parameters of the
experimental system are not known [13], both the simulated and measured data are each normalized with
respect to the amplitude of the first mesh harmonic of the off-line-of-action displacement (which is then
designated as 100%). This facilitates comparison of trends, i.e., simulations and measurements can be plotted
together over the range from 0% to 100%.

The first five mesh harmonics of the line-of-action displacement are shown as a function of mean torque in
Fig. 17. (In this and other figures, predictions are shown as continuous lines for the sake of clarity though they
are calculated only at discrete points like the measurements). Observe that the overall simulation trend
matches the experimental results well. Magnitudes of the first two mesh harmonics are most dominant and
they have minimum values around the optimized load due to the linear tip relief. Fig. 17 also shows the
predicted first two harmonics for the prefect involute gear (II-A). Compared with the tip relief gear, they
increase monotonically with the mean torque and have much higher values than the tip relief gear harmonics
around the ‘‘optimal’’ torque.

The first five normalized mesh harmonic amplitudes of the off-line-of-action displacement are shown in
Fig. 18, as a function of mean torque. The overall simulation trend again matches the experimental results
well. However, unlike the line-of-action responses, the first harmonic of off-line-of-action displacement grows
monotonically with an increase in the mean torque. This is because the friction forces increase almost
proportionally with normal loads as predicted by the Coulomb law, but the frictional contribution of each
meshing tooth pair tends to be in phase with each other for the tip relief gear (II-B). Thus it should amplify the
combined friction force excitation in the off-line-of-action direction. Consequently it is not reducing the off-
line-of-action direction responses induced by the sliding friction, even though profile modification can be
efficiently used to minimize gear vibrations in the line-of-action direction.

The first five mesh harmonics of the normalized dynamic transmission error are shown in Fig. 19 for II-A
and II-B cases over a range mean torques. Observe that the dynamic transmission error spectral trends are
very similar to the static transmission error spectra of Fig. 10. For example, the harmonic amplitudes of the
perfect involute gear grow monotonically with mean torque while the harmonic amplitudes of the tip relief
gear have minimum values around the ‘‘optimal’’ torque. Also, the dynamic transmission error spectra show a
dominant second harmonic, whose magnitude is comparable to that at the first harmonic. In some cases for
Fig. 17. Mesh harmonic amplitudes of Xp as a function of the mean torque at 140 1F. All values are normalized with respect to the

amplitude of Yp at the first mesh harmonic. — n ¼ 1 (prediction of II-B), - - n ¼ 2 (prediction of II-B),?? n ¼ 3 (prediction of II-B), – � –

n ¼ 1 (prediction of II-A), – � � – n ¼ 2 (prediction of II-A), } n ¼ 1 (measurement of II-B), + n ¼ 2 (measurement of II-B), and J n ¼ 3

(measurement of II-B).
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Fig. 19. Predicted dynamic transmission errors (DTE) for Example II over a range of torque at 140 1F: (a) gear pair with perfect involute

profile (II-A) and (b) with tip relief (II-B). All values are normalized with respect to the amplitude of d (II-A) at the first mesh harmonic

with 100 lb-in. — n ¼ 1 (II-B), - - n ¼ 2 (II-B), and ?? n ¼ 3 (II-B).

Fig. 18. Mesh harmonic amplitudes of yp as a function of the mean torque at 140 1F for Example II-B. All values are normalized with

respect to the amplitude of yp at the first mesh harmonic. — n ¼ 1 (prediction of II-B), - - n ¼ 2 (prediction of II-B),?? n ¼ 3 (prediction

of II-B), } n ¼ 1 (measurement of II-B), + n ¼ 2 (measurement of II-B), and J n ¼ 3 (measurement of II-B).
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the tip relief gear the second harmonic becomes the most dominant component especially when the mean
torque is lower than 350 lb-in.

Finally, the first five mesh harmonics of the normalized line-of-action displacement are shown in Fig. 20 as a
function of the operational temperature. The changes in temperature are converted into a variation in friction
(m) by using the data in Table 3. Compared with the off-line-of-action motions, both predictions and
measurements in the line-of-action direction give almost identical results at all temperatures. Fig. 21 shows the
first five normalized mesh harmonic amplitudes of the off-line-of-action displacement as a function of
temperature. The first harmonic varies quite significantly even though the changes in m are relatively
small. Consequently, the off-line-of-action dynamics tends to be much more sensitive than the online
action dynamics to a variation in m. Measured data in Fig. 21 show some variations due to the experimental
errors [13].
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Fig. 20. Mesh harmonic amplitudes of xp as a function of temperature at 500 lb-in for Example II-B. All values are normalized with

respect to the amplitude of yp at the first mesh harmonic. — n ¼ 1 (prediction of II-B), - - n ¼ 2 (prediction of II-B),?? n ¼ 3 (prediction

of II-B), } n ¼ 1 (measurement of II-B), + n ¼ 2 (measurement of II-B), and J n ¼ 3 (measurement of II-B).

Fig. 21. Mesh harmonic amplitudes of yp as a function of temperature at 500 lb-in for Example II-B. All values are normalized with

respect to the amplitude of yp at the first mesh harmonic. — n ¼ 1 (prediction of II-B), - - n ¼ 2 (prediction of II-B),?? n ¼ 3 (prediction

of II-B), } n ¼ 1 (measurement of II-B), + n ¼ 2 (measurement of II-B), and J n ¼ 3 (measurement of II-B).
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8. Conclusion

The chief contribution of this paper is the development of a new multi-degree of freedom, linear time-
varying model. This formulation overcomes the deficiency of Vaishya and Singh’s work [1–3] by employing
realistic tooth stiffness functions and the sliding friction over a range of operational conditions. Refinements
include: (1) an accurate representation of tooth contact and spatial variation in tooth mesh stiffness based on a
finite element/contact mechanics code in the ‘‘static’’ mode; (2) a Coulomb friction model for sliding resistance
with an empirical coefficient of friction that is a function of operation conditions; (3) a better representation of
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the coupling between the line-of-action and off-line-of-action directions including torsional and translational
degrees of freedom. Numerical solutions of the multi-degree-of-freedom model yield the dynamic transmission
error and vibratory motions in the line-of-action and off-line-of-action directions. The new model has been
successfully validated first by using the finite element/contact mechanics code while running in the ‘‘dynamic’’
mode and then by analogous experiments. Since the lumped model is more computationally efficient than the
finite element/contact mechanics analysis, it could be quickly used to study the effects of varying a large
number of parameters.

One of the main effects of sliding friction is the enhancement of the dynamic transmission error magnitude
at the second gear mesh harmonic. A key question of whether the sliding friction is indeed the source of the
off-line-of-action motions and forces is then answered by our model. The bearing forces in the line-of-action
direction are influenced by the normal tooth loads, but the sliding frictional forces primarily excite the off-line-
of-action motions. Finally, the effect of the profile modification on the dynamic transmission error has been
analytically examined under the influence of frictional effects. For instance, the tip relief introduces an
amplification in the off-line-of-action motions and forces due to an out of phase relationship between the
normal load and friction forces. This knowledge should be of significant utility to designers. Future modeling
work should include an examination of the effects of other profile modifications to determine the conditions
for minimal dynamic responses when both static transmission error and friction excitations are simultaneously
present. Also, the model could be further refined by incorporating alternative friction formulations.
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